Package: StMoSim (via r-universe)

October 13, 2024

2 qqnormSim

qqnormSim

Quantile-Quantile plot with several Gaussian simulations.

Description

Plots a QQ plot of the variable x with nSim Gaussian simulations.

Usage

```
qqnormSim(x, nSim = 500, mOfVar = "mad",
    main = "Normal Q-Q Plot - SIM", xlab = "Theoretical Quantiles",
    ylab = "Sample Quantiles", qqnormCol = "black", qqnormPch = 1,
    qqlineCol = "#cdd2d015", qqlineLwd = 3)

## S4 method for signature 'lm'
qqnormSim(x, nSim = 500, mOfVar = "mad",
    main = "Normal Q-Q Plot - SIM", xlab = "Theoretical Quantiles",
    ylab = "Sample Quantiles", qqnormCol = "black", qqnormPch = 1,
    qqlineCol = "#cdd2d015", qqlineLwd = 3)

## S4 method for signature 'numeric'
qqnormSim(x, nSim = 500, mOfVar = "mad",
    main = "Normal Q-Q Plot - SIM", xlab = "Theoretical Quantiles",
    ylab = "Sample Quantiles", qqnormCol = "black", qqnormPch = 1,
    qqlineCol = "#cdd2d015", qqlineLwd = 3)
```

Arguments

X	a lm-object or a numeric vector. If it's a lm-object its residuals are plotted.
nSim	[optional] the number of simulations you like to add to the plot.
mOfVar	[optinal] a measure of variation. ("mad" or "sd")
main	[optional] an overall title for the plot.
xlab	[optional] a title for the x axis.
ylab	[optional] a title for the y axis.
qqnormCol	[optional] color of the obervations in the plot.
qqnormPch	[optional] point character of the observations in the plot.
qqlineCol	[optional] color of the simulations in the plot.
qqlineLwd	[optional] line width of the simulations. should not be higher than 3.

Details

Two estimators are required for the simulation of the normal distribution. Since the normal distribution is a two-parameter family distribution. Default measure of location is the mean. Default measure of variation is the mad. This gives a robust estimation of the standard deviation even if there are outliers in the sample. Likewise this can be changed with the parameter m0fVar.

qqnormSim 3

Value

```
invisible(NULL)
```

Author(s)

Matthias Salvisberg <matthias.salvisberg@gmail.com>

See Also

the basic graph corresponds to qqnorm

Examples

```
## Not run:
####### gqnorm vs. gqnormSim #######
par(mfrow = c(1,2))
x < - rnorm(100)
qqnorm(x)
qqline(x)
qqnormSim(x)
par(mfrow = c(1,1))
####### basic functionality/arguments #######
# The observations should behave like a simulation,
# because the observations are sampled from a Gaussian distribution.
qqnormSim(x = rnorm(100))
# If you don't feel comfortable with the mad as
# measure of variation you can change it to the standard deviation.
qqnormSim(x = rnorm(100),
          mOfVar = "sd")
# On the first glance its obvious that this sample
# doesn't originate from a Gaussian distribution due to the heavy tails.
qqnormSim(x = rt(100, df = 4))
Reduce the simulation tracks from 500 to 50. (500 is default).
Not recommended unless you have not enough computation power.
qqnormSim(x = rnorm(100),
         nSim = 50)
####### graphical arguments #######
# set title and axes labels.
qqnormSim(x = rnorm(100),
         main = "main title",
         xlab = "x-axis label",
         ylab = "y-axis label")
```

4 StMoSim

StMoSim

StMoSim: Plots a QQ-Norm Plot with Several Gaussian Simulations

Description

With this package you can simulate several lines into the QQ-Norm Plot under the assumption of Gaussian distribution. If the realised observations lie inside of the simulations tracks there is the possibility that the observations stem from a Gaussian distribution. This can be very useful in residual analysis where you have to evaluate whether the model residuals fit the assumption of gaussian distributed terms or not.

Changelog

```
--<CHANGELOG>---
-----< v3.1.1 - 2018-11-19 >-----
provide more (plot) arguments to the user.
updated documentation - added more expamples.
added BugReports argument in DESCRIPTION.
implemented all recommendations from RcppParallel package.
   ---< v3.1 - 2018-11-13 >---
Minor bug fixes, due to CHECK changes on CRAN.
Moved documentation to roxygen2.
-----< v3.0 - 2014-10-16 >-----
Computation intense code moved to C++.
Moved to parallel computation, thanks to Rcpp/RcppParallel!
Minor bug fixes.
-----< v2.2 - 2012-02-24 >-----
Minor bug fixes, due to CHECK changes on CRAN.
  ---< v2.1 - 2012-02-24 >-----
Minor bug fixes.
-----<v2.0 - 2011-03-31 >-----
Moved to S4 Classes.
```

StMoSim 5

Author(s)

Matthias Salvisberg <matthias.salvisberg@gmail.com>

Index

```
* package
    StMoSim, 4

* qqnorm
    qqnormSim, 2

qqnormSim, 1m-method (qqnormSim), 2
qqnormSim, numeric-method (qqnormSim), 2
StMoSim, 4
StMoSim-package (StMoSim), 4
```